Yasuo Suto

Three ascomycetes on leaves of evergreen Ilex trees from Japan: Rhytisma ilicis-integrae sp. nov., R. ilicis-latifoliae, and R. ilicis-pedunculosae sp. nov.

Received: July 29, 2008 / Accepted: March 30, 2009

Abstract

Three species belonging to the genus Rhytisma causing tar spot were collected on leaves in evergreen trees of Ilex species from Japan. Rhytisma ilicis-latifoliae, the known species, is found on Ilex latifolia, and R. ilicis-integrae sp. nov. and R. ilicis-pedunculosae sp. nov. are found on I. integra and I. pedunculosa, respectively. Ascomata are formed on the abaxial part of the stromata in all the Rhytisma species studied, and spermogonia are formed on the amphigenous parts in R. ilicis-latifoliae and on the adaxial part in R. ilicis-integrae and R. ilicis-pedunculosae. Shape and size of asci, ascospores, and spermatia are distinctly different among the three species. The morphology of germination tubes from ascospores and appressoria is unique for each Rhytisma species. Yellowish spots arise on the newly developing leaves in mid-May, then abundant spermatia are produced in spermogonia in the three Rhytisma species. In the next year, ascospores are produced in ascomata from early April to late May in R. ilicis-integrae and from early April to early June in R. ilicis-latifoliae and R. ilicis-pedunculosae, and they are considered to be the inocula of disease infection.

Key words Infection cycle • Morphology • Rhytismatales • Taxonomy

Introduction

In 1890, Tanaka reported Rhytisma curtisii Berk. \& Ravenel on Ilex integra Thunb. collected from the Tokyo Metropolitan area, and this is the first record on Rhytisma on Ilex trees from Japan. No morphological characteristics of his fungus, however, were shown. In about 1900, some Japanese phytopathologists sent several specimens of the tar spot on Ilex trees collected from Japan to Dr. P. Hennings, at the Berlin

[^0]Botanical Museum, asking him for identification of the causal fungus. Hennings (1899) reported a new species of Rhytisma, R. ilicis-latifoliae Henn., based on a specimen of I. latifolia Thunb. collected from Nagasaki Prefecture, although the description of the fungus was very brief (Saccardo 1902). Hennings $(1900,1901,1903)$ also identified the Rhytisma specimens on I. integra collected from Chiba Prefecture and I. pedunculosa Miq. collected from Kochi Prefecture as R. ilicis-latifoliae and the fungus on I. macropoda Miq. collected from Tokyo Metropolitan and Kochi Prefecture as R. prini (Schwein.) Fr. From the identification by Hennings, Yoshinaga (1902) noted R. ilicislatifoliae on I. latifolia and I. pedunculosa and R. prini on I. macropoda collected from Kochi Prefecture. Yoshinaga (1901), however, noted that the Rhytisma on I. integra collected from Kochi Prefecture was R. ilicis-integrifoliae Henn., but no original paper by Hennings has been found. Later, Yoshinaga (1904) identified Rhytisma on I. integra collected from Kanagawa Prefecture as R. ilicis-latifoliae.

Several Ilex tree species have been planted in gardens and parks throughout the western part of Japan, and the "tar spot" caused by Rhytisma species has been frequently reported as a serious disease of the ornamental Ilex trees (Kobayashi 1983; Horie et al. 2001). On the causal fungi, several Japanese reporters have noted Rhytisma on evergreen Ilex trees as R. ilicis-latifoliae and the fungus on deciduous Ilex trees as R. prini (Kobayashi 2007). The same treatment on the causal fungi was carried out in "Common names of plant diseases in Japan" (The Phytopathological Society of Japan 2000). Morphological characteristics of these species of Rhytisma, however, have not been described in detail.

The genus Melasmia has been known as an anamorph of the genus Rhytisma (Cannon and Minter 1986). Although no teleomorph was described, Yoshinaga (1911) and Yamamoto and Yasumori (1960) noted Melasmia ilicis Henn. on Ilex geniculata Maxim., but the original paper on the species by Hennings has not been found. The conidia of Melasmia, however, are minute, and their germination has never been observed, which has led to speculation that they are spermatia (Jones 1925; Cannon and Minter 1986).

Several Rhytisma inhabiting Ilex trees were reported from other countries as follows: R. bontocense Syd. on Ilex buergeri Miq. var. rolfei (Elm.) Loesen. from the Philippines; R. concavum Ellis \& Kellerm. on I. verticillata (L.) A. Gray from North America (Kellerman 1902; Saccardo 1906); R. himalense Syd., P. Syd. \& E. J. Butler on I. dipyrena Wall., I. fargesii Franch., and Ilex sp. from India, Pakistan, and China (Sydow et al. 1911; Cannon and Minter 1986; Hou and Piepenbring 2005); R. ilicis Sawada on I. micrococca Maxon var. longifolia Hayata from China (Taiwan) (Sawada 1959); R. ilicincolum Schwein. on I. prinoides Sol. (= I. decidua Walter) from North America (Saccardo 1895); R. loseneriana Henn. on I. dumosa Reissek from Urguay (Saccardo 1889); R. prini on I. verticillata (L.) A. Gray from North America (Saccardo 1895); and R. velatum (Schwein.) Fr. on I. prinoides from North America (Saccardo 1895). For Melasmia, Sawada (1959) reported M. ilicicola Sawada on I. asprella Champ. ex Benth. from China (Taiwan). Fungi belonging to the Rhytisma and Melasmia on Ilex trees collected from Japan should be morphologically compared with those foreign fungi, but it is impossible to compare with those on R. ilicincolum, R. prini, and R. velatum because no dimensions of asci and ascospores were reported.

Under these circumstances, I investigated the Rhytisma species on three evergreen Ilex tree species, i.e., I. integra, I. latifolia, and I. pedunculosa, collected mainly from Shimane Prefecture, Japan. Morphology was distinctly different among these fungi with respect to the host, and they could be treated as three different fungi including two new species. The purpose of this article is to describe and illustrate the morphology of the Rhytisma on these hosts and discuss their taxonomy. To identify the infection cycle of the disease, seasonal developments of symptoms, signs, and fruiting bodies were examined and germination of ascospores and formation of appressoria were observed.

Materials and methods

From February 2002 to December 2007, I collected fresh materials of Rhytisma from three evergreen Ilex trees, I. integra (Japanese name: Mochinoki), I. latifolia (Tarayo), and I. pedunculosa (Soyogo), mostly at Matsue, Shimane Prefecture, Japan. The numbers of specimens were 19, 19, and 29 on I. integra, I. latifolia, and I. pedunculosa, respectively. These specimens were deposited in the Herbarium of Y. Suto (YSH). Five specimens of Rhytisma (3 and 2 specimens on I. integra and I. pedunculosa, respectively), deposited in the Herbarium in the Mountainous Region Research Center in Shimane Prefecture (SFH), were also examined. Two holotype specimens, on I. integra and I. pedunculosa, were deposited in the Herbarium of Forest Mycology and Pathology, Forestry and Forest Products Research Institute, Japan (TFM:FPM).

Macroscopic features of the fungi were observed under a hand lens and a stereoscope micrometer. Hand-sectioned
pieces were mounted in Shear's fluid, and morphological characteristics of the fungi were observed and measured under a light microscope.

Because the minute conidia produced in conidiomata never germinated in repeated experiments, conidiomata and conidia of these fungi were, respectively, considered as spermogonia and spermatia in this article. Seasonal development of the stromata, ascomata and spermogonia, and production of ascospores and spermatia were recorded for each species.

A piece of stroma with maturing ascoma was attached onto the inner surface lid and was placed over 2% sucrose agar. Discharged ascospores were examined to check the germination and formation of appressoria.

Descriptions

Rhytisma ilicis-integrae Y. Suto, sp. nov.
Figs. 1-10, 31, 34
MycoBank no.: MB 513379.
Stromatibus amphigenis, plus minusve circularibus, $0.8-$ 3.7 mm diametris, nigris; ascomatibus abaxialibus, stromatibus innatis, 2-3 locularibus in aspectu medio-verticali, $290-430 \mu \mathrm{~m}$ profundis; paraphysibus filiformibus, simplicibus, $170-200 \times 0.5 \mu \mathrm{~m}$, asepatatis, apice non circinatis; ascis invicem maturantis, elongato-clavatis, longistipitatis, apice rotundatis, annulo apicali jodo non caerulescenti praeditis, $95-180 \times 9.5-12 \mu \mathrm{~m}$, octosporis; ascosporis uni- ad tristichis, elongato-fusiformibus, basem versus angustatis, $16-32 \times$ $2.5-3.5 \mu \mathrm{~m}$, hyalinis, aseptatis, in tunica gelatinosa non inclusis. Spermogoniis adaxialibus, immaturis strobatibus innatis, multilocaribus, $50-60 \mu \mathrm{~m}$ profundis; spermatiophoris cylindricis, apicem versus angustatis, $20-25 \times 1 \mu \mathrm{~m}$, hyalinis; spermatiis ellipticis ad allantoideis, $2-4 \times 1 \mu \mathrm{~m}$, hyalinis, aseptatis.

Etymology: Named after its host species name.
Holotype: On living leaves of Ilex integra, Tonomachi, Hamada, Shimane Pref., Japan, April 26, 2004, Y. Suto, TFM:FPH-7970.

Stromata developing on the amphigenous surfaces of living leaves, roughly circular but with irregular outlines, $0.8-3.7 \mathrm{~mm}$ in diameter, occasionally confluent, black, surrounded by yellow halos.

At the ascomatal stage, stromata rising significantly above the amphigenous leaf surfaces, $0.5-1.2 \mathrm{~mm}$ thick, developing through the host mesophyll; outer layer of stroma developing into $35-50 \mu \mathrm{~m}$ thick on the adaxial surface, $40-60 \mu \mathrm{~m}$ thick on the abaxial surface, consisting of strongly blackened tissue joined with dark brown textura angularis cells with blacking in the intercellular spaces; inner part of the stroma consisting of tightly packed hyphae and hyaline thick-walled textura intricata cells, containing degraded mesophyll cells of the host. At maturity of ascomata, lower outer layer of the stroma rupturing by an irregular circle in the outer portion.

Ascomata confined to the abaxial part of the stromata, toroidal or horseshoe shaped, exposing yellowish hymenium in surface view, formed $290-430 \mu \mathrm{~m}$ deep, with two to three loculi at median vertical section, hymenial space roughly circular; upper wall developing beneath the outer layer of stroma, 50-75 $\mu \mathrm{m}$ thick, consisting of brown textura globulosa cells, with dark browning in the intercellular spaces; lower wall $15-30 \mu \mathrm{~m}$ thick, consisting of dark brown textura intricata cells; subhymenium $20-80 \mu \mathrm{~m}$ thick, consisting of hyaline textura intricata cells, often with fragments of blackened material at the lower portion. Paraphyses filiform, simple, $170-190 \times 0.5 \mu \mathrm{~m}$, aseptate, not coiled at the apex. Asci ripening sequentially, elongated clavate, long-stalked, with rounded apex, without a pore bluing in Melzer's reagent, $95-180 \times 9.5-12 \mu \mathrm{~m}, 8$-spored. Ascospores 1 - to 3 -seriate, elongated fusiform, tapering toward the base, 16-32 $\times 2.5-3.5 \mu \mathrm{~m}$, smooth-walled, hyaline, aseptate, without a gelatinous sheath.

At spermogonial stage developing before ascomatal stage, stromata black, shining, rugose, and rising slightly on the adaxial surface, not shining and flat on the abaxial surface; outer layer of stroma formed beneath the host cuticle, $15-45 \mu \mathrm{~m}$ thick, consisting of strongly blackened tissue with structure difficult to discern, on the adaxial surface, $15-25 \mu \mathrm{~m}$ thick, consisting of dark brown textura angularis cells with blacking in the intercellular spaces on the abaxial surface.

Spermogonia confined to the adaxial part of the stroma, formed at a depth of $50-60 \mu \mathrm{~m}$; upper wall formed as the outer layer of stroma; lower wall $8-13 \mu \mathrm{~m}$ thick, consisting of heavily degraded epidermal and dark browned textura intricata cells; spermogonial lumen divided into several loculi by blackened rampart tissue, which arises from the lower wall; the lower layer of spermogonium 3-5 $\mu \mathrm{m}$ thick, hyaline tissue with structure difficult to discern. Spermatiophores arising directly from the lower layer cells, cylindrical , slightly tapering towards the apex, $20-25 \times 1 \mu \mathrm{~m}$, hyaline with dark browning at the basal portion, holoblastic, proliferating mostly percurrently but occasionally sympodially. Spermatia elliptical to allantoid, $2-4 \times 1 \mu \mathrm{~m}$, hyaline, aseptate.

Additional specimens examined: On living leaves of Ilex integra, Agenogi, Matsue, Shimane Pref., Japan, April 20, 1973 (SFH-221); Nishikawatsu, Matsue, Shimane Pref., Japan, June 1, 1972 (SFH-151*), April 30, 2002 (YSH-421); Ohba, Matsue, Shimane Pref., Japan, April 18, 2002 (YSH401), May 25, 2002 (YSH-440*), May 17, 2003 (YSH-800), April 15, 2004 (YSH-1131), April 28, 2004 (YSH-1149), May 5, 2004 (YSH-1161), May 15, 2004 (YSH-1170), May 20, 2004 (YSH-1189), June 14, 2004 (YSH-1217*), April 27, 2005 (YSH-1423, 1425), April 6, 2006 (YSH-1632), May 15, 2006 (YSH-1682), April 12, 2007, (YSH-1813), May 2, 2007 (YSH-1823), May 16, 2007 (YSH-1833), May 30, 2007 (YSH-1839*); Shinji, Matsue, Shimane Pref., Japan, April 13, 1973 (SFH-284); Uehama, Tsu, Mie Pref., Japan, March 29, 2003 (YSH-754) (* indicates spermogonia- and sperma-tia-producing specimens).

Notes: Rhytisma ilicis-integrae is characterized by small stromata, rounded apices of asci, and long narrowly fusi-
form ascospores (Table 1; Figs. 1, 5-7, 31). The spermogonial stage of R. ilicis-integrae is characterized by spermogonia formed only on the adaxial leaf surface and elliptical to allantoid spermatia (Figs. 8, 10, 34). Ascospores of R. ilicisintegrae are similar to R. bontocense (Sydow 1932) in shape and size. Asci of R. ilicis-integrae are larger in length and smaller in width than those of R. bontocense.

Rhytisma curtisii (Tanaka 1890), R. ilicis-integrifoliae (Yoshinaga 1901), and R. ilicis-latifoliae (Hennings 1900; Yoshinaga 1904) were reported on Ilex integra, and taxonomic confusion has been introduced. It is a question how Tanaka (1890) identified his fungus as R. curtisii. Because R. curtisii did not agree with the circumscription of Rhytisma, Höhnel (1917) designated the fungus as the type of a new genus Macroderma, M. curtisii (Berk. \& Ravenel) Höhn., and then Luttrell (1940) transferred the fungus to the genus Phacidium and designated P. curtisii (Berk. \& Ravenel) Luttr.

The original paper on R. ilicis-integrifoliae described by Hennings has not been found, and the fungal name reported by Yoshinaga (1901) should be eliminated. Because the morphological characteristics of the Rhytisma on I. integra clearly differed from R. ilicis-latifoliae, the identification of the fungus by Hennings (1900) and Yoshinaga (1904) is considered to be incorrect.

Rhytisma ilicis-latifoliae Henn., in Warburg, Monsunia 1: 29, 1899.
 Figs. 11-20, 32, 35

Stromata developing on amphigenous surfaces of living leaves, roughly circular with irregular outlines, $1.7-4.4 \mathrm{~mm}$ in diameter, occasionally confluent, black, surrounded by yellow halos.

At ascomatal stage, stromata rising significantly above the amphigenous leaf surfaces, $1.2-1.8 \mathrm{~mm}$ thick, developing through the host mesophyll; outer layer of stroma developing to $50-150 \mu \mathrm{~m}$ thick, consisting of strongly blackened tissue joined with dark brown textura angularis cells with blacking in the intercellular spaces; inner part of the stromata consisting of tightly packed hyphae and hyaline thickwalled textura intricata cells, containing degraded mesophyll cells of the host. At maturity, lower outer layer of stroma peeled off from outer portion of the stroma as a circular disk.

Ascomata confined to the abaxial part of the stromata, developing below the spermogonia formed on the abaxial surface, daedaleoid, exposing yellowish hymenium in surface view, and formed 310-600 $\mu \mathrm{m}$ deep, with four to five loculi at median vertical section, hymenial space roughly circular; upper wall developing beneath the outer layer of the stroma, $40-75 \mu \mathrm{~m}$ thick, consisting of browned textura globulosa cells, with dark browning in the intercellular spaces; lower wall $25-50 \mu \mathrm{~m}$ thick, consisting of dark brown textura intricata cells; subhymenium 20-80 $\mu \mathrm{m}$ thick, consisting of hyaline textura intricata cells, occasionally with fragments of blackened material in the intercellular spaces at the lower portion. Paraphyses filiform, simple, 200-230× $0.5 \mu \mathrm{~m}$, aseptate, not coiled at the apex. Asci ripening sequentially, narrowly clavate, long-stalked, rostrate at
Table 1. Morphology of asci and ascospores of Rhytisma species on Ilex

Species	Specimen	Host	Ascus, $\mu \mathrm{m}$ (average)	Ascospore	
				Size, $\mu \mathrm{m}$ (average)	Shape
R. bontocense ${ }^{\text {a }}$		I. buergeri var. rolfei	$60-100 \times 13-16$	$25-32 \times 3$	Cylindrical to cylindrical fusoid
R. concavum ${ }^{\text {b }}$		I. verticillata	$80-100 \times 8-10$	$20-35 \times 2-3$	Elongated clavate (from figure)
R. himalense ${ }^{\text {c }}$		I. dipyrena, I. sp.	$145-215 \times 10.2-14$	$25-27.5 \times 3-4$	Elongated clavate
R. himalense ${ }^{\text {d }}$		I. fargesii	$90-160 \times 9-13$	$26-40 \times 3-4.5$	Clavate to cylindrical clavate
R. ilicis ${ }^{\text {e }}$		I. micrococca var. longifolia	$67-73 \times 10-13$	$20-31 \times 3.5-4.5$	Long-cylindrical clavate
R. ilicis-integrae ${ }^{\mathrm{f}}$	YSH-401	I. integra	$95-180 \times 11-12(130 \times 11.5)$	$16-29 \times 2.5-3(25 \times 3)$	Elongated fusiform, tapering toward the base
	YSH-754	do.	$95-170 \times 9.5-11.5(12.5 \times 10.5)$	$17.5-30.5 \times 2.5-3.5(23 \times 3)$	do.
	TFM:FRH-7970	do.	$105-155 \times 10-12(140 \times 11)$	$21-32 \times 2.5-3(26.5 \times 3)$	do.
R. ilicis-latifoliae ${ }^{\text {g }}$		I. latifolia	$90-150 \times 9-12$	$15-17 \times 4-5$	Elongated fusoid
R. ilicis-latifoliae ${ }^{\text {f }}$	YSH-1151	I. latifolia	$145-200 \times 11-12.5(170 \times 12)$	$16-22.5 \times 3-5(20.5 \times 3.5)$	Clavate to fusoid
	YSH-1152	do.	$145-180 \times 10-11.5(160 \times 10.5)$	$17.5-24 \times 3-4.5(20.5 \times 3.5)$	do.
	YSH-1821	do.	$153-235 \times 9.5-12(178 \times 10)$	$10.5-21 \times 3-3.5(18.5 \times 3)$	do.
R. ilicis-pedunculosae ${ }^{\mathrm{f}}$	YSH-400	I. pedunculosa	$120-155 \times 10.5-12(130 \times 12)$	$29-43 \times 2.5-4(35.5 \times 3.5)$	Elongated clavate, tumidiuscule at the base
	YSH-419	do.	$95-110 \times 9.5-12(100 \times 10.5)$	$29-43 \times 2.5-4(34 \times 3.5)$	
	TFM:FRH-7974	do.	$110-170 \times 9.5-11(130 \times 10.5)$	$24-38.5 \times 3-3.5(31 \times 3)$	do.
R. loeseneriana ${ }^{\text {h }}$		I. dumosa	$70-87 \times 18-21$	$21-24 \times 4-6$	Not described (1-septate)

Data are derived from Sydow (1932), ${ }^{\mathrm{a}}$ Kellerman (1902), ${ }^{\mathrm{b}}$ Cannon and Minter (1986), ${ }^{\mathrm{c}}$ Hou and Piepenbring (2005), ${ }^{\mathrm{d}}$ Sawada (1959), ${ }^{\mathrm{e}}$ this paper, ${ }^{\mathrm{f}}$ Hennings (1899), ${ }^{\mathrm{g}}$ Saccardo (1889) ${ }^{\mathrm{h}}$
apex, without a pore bluing in Melzer's reagent, 145-235× $9.5-12.5 \mu \mathrm{~m}, 8$-spored. Ascospores 1 - to 3 -seriate, clavate to fusoid, 16-24 $\times 3-5 \mu \mathrm{~m}$, hyaline, aseptate, covered by a gelatinous sheath.

At spermogonial stage developing before ascomatal stage, stromata black, shining, rugose, and rising slightly on the amphigenous leaf surfaces; outer layer of stroma formed beneath the host cuticle, $15-30 \mu \mathrm{~m}$ thick, consisting of strongly blackened tissue with structure difficult to discern.

Spermogonia formed on both parts of the stromata, formed $50-60 \mu \mathrm{~m}$ deep; upper wall formed as the outer layer of stroma; lower wall $8-13 \mu \mathrm{~m}$ thick, consisting of heavily degraded epidermal cells and dark brown textura intricata cells; spermogonial lumen divided into several loculi by blackened rampart tissue, which arises from the lower wall; the lower layer of spermogonium 3-6 $\mu \mathrm{m}$ thick, consisting of hyaline tissue with structure difficult to discern. Spermatiophores arising directly from the lower layer cells, cylindrical, slightly tapering toward the apex, $20-25 \times 1-$ $1.5 \mu \mathrm{~m}$, hyaline with dark browning at the basal portion, holoblastic, proliferating mostly percurrently but occasionally sympodially. Spermatia elliptical to ovoid, $2.5-3 \times 1.5-$ $2 \mu \mathrm{~m}$, hyaline, aseptate.

Specimens examined: On living leaves of Ilex latifolia Thunb., Kumano, Yakumo, Matsue, Shimane Pref., Japan, April 8, 2004 (YSH-1125), April 15, 2004 (YSH-1128, 1129), April 28, 2004 (YSH-1151), May 5, 2004 (YSH-1152), May 15, 2004 (YSH-1168), May 26, 2004 (YSH-1184), June 14, 2004 (YSH-1208*), June 24, 2004 (YSH-1231*), April 28, 2005 (YSH-1431), May 12, 2005 (YSH-1439), April 19, 2006 (YSH-1648, 1651, 1652), April 11, 2007 (YSH-1805), May 2, 2007 (YSH-1821), May 16, 2007 (YSH-1832), June 1, 2007 (YSH-1843), June 21, 2007 (YSH-1857) (* indicates sper-mogonia- and spermatia-producing specimens).

Notes: The present fungus is characterized by large stromata, long asci with rostrate apices, and small clavate to fusoid ascospores covered by a gelatinous sheath (Table 1 ; Figs. 11, 14-17, 32). It is a unique feature that the lower layer of the stroma peels off as a circular disk at maturity of the ascomata. The spermogonial stage of this species is characterized by spermogonia formed on the amphigenous leaf surfaces and elliptical to ovoid spermatia (Figs. 18, 20, 35).

The present fungus is morphologically similar to R. ilicislatifoliae described by Hennings (1899), except for slightly longer asci and ascospores. The present fungus were collected on the same host (Ilex latifolia) and in the same locality (Japan) as Hennings described. Ascospores of the present fungus are similar in shape to those of R. concavum (Kellerman 1902), R. himalense (Cannon and Minter 1986; Hou and Piepenbring 2005), and R. ilicis (Sawada 1959), but are smaller in size. The present fungus has larger asci than those of R. concavum and R. ilicis. Rhytisma loseneriana (Saccardo 1889) is different from all the three Rhytisma species studied for this report in having one-septate ascospores, although the shape of ascospores is not described (see Table 1). Therefore, the present fungus is identified as R. ilicis-latifoliae.

Figs. 11-20. Rhytisma ilicis-latifoliae. 11 Opened ascostroma on abaxial surface. 12 General view of ascostroma in vertical section. ads, adaxial leaf surface; $a b s$, abaxial leaf surface. 13 Enlarged ascoma formed in stroma. hy, hymenium; ol, outer layer of stroma; is, inner part of stroma; $u w$, upper wall of ascoma; $l w$, lower wall of ascoma. 14 Asci and paraphyses. 15 Upper portion of ascus. 16 Ascospore. 17 Black-
ened stromata on adaxial surface. 18 General view of spermogonia in vertical section. ads, adaxial leaf surface; abs, abaxial leaf surface. 19 Enlarged spermogonium in stroma. s, spermatia; $s p$, spermatiophores; $u w$, upper wall; $l w$, lower wall. 20 Spermatia. Bars 11, 12, 181 mm ; 13, $14100 \mu \mathrm{~m} ; \mathbf{1 5}, 16,19,2010 \mu \mathrm{~m} ; 1710 \mathrm{~mm}$

Rhytisma ilicis-pedunculosae Y. Suto, sp. nov.
Figs. 21-30, 33, 36
MycoBank no.: MB 513380.
Stromatibus amphigenis, plus minusve circularibus, $0.6-$ 3.1 mm diametris, nigris; ascomatibus abaxialibus, stromatibus innatis, 1-2 locularibus in aspectu edio-verticali, 260-600 $\mu \mathrm{m}$ profundis; paraphysibus filiformibus, simplicibus, $170-200 \times 0.5 \mu \mathrm{~m}$, asepatatis, apice circinatis; ascis invicem maturantis, elongato-clavatis, longistipitatis, apice truncatis, annulo apicali jodo non caerulescenti praeditis, $95-170 \times 9.5-12 \mu \mathrm{~m}$, octosporis; ascosporis uni- ad tristichis, elongato-clavatis, basi tumidulis, $24-43 \times 2.5-4 \mu \mathrm{~m}$, hyalinis, aseptatis, in tunica gelatinosa inclusis. Spermogonis adaxialibus, immaturis strobatibus innatis, multilocaribus, 50$60 \mu \mathrm{~m}$ profundis; spermatiophoriis cylindricis, apicem versus angustatis, $20-25 \times 1 \mu \mathrm{~m}$ hyalinis; spermatiis clavatis, $3-5 \times$ $1 \mu \mathrm{~m}$, hyalinis, aseptatis.

Etymology: Named after its host species name.
Holotype: On living leaves of Ilex pedunculosa, Ohba, Matsue, Shimane Pref., Japan, May 2, 2007, Y. Suto, TFM: FPH-7974.

Stromata developing on the amphigenous surfaces of living leaves, roughly circular but with irregular outlines, occasionally polygonal, $0.6-3.1 \mathrm{~mm}$ in diameter, occasionally confluent, black, surrounded by yellow halos.

At ascomatal stage, stromata rising significantly above the amphigenous leaf surfaces, $1-1.5 \mathrm{~mm}$ thick; outer layer of stroma developing $60-100 \mu \mathrm{~m}$ thick on the adaxial surface, $50-75 \mu \mathrm{~m}$ thick on the abaxial surface, consisting of strongly blackened tissue joined with dark brown textura angularis cells with blackening in the intercellular spaces; inner part of the stromata consisting of tightly packed hyphae and hyaline thick-walled textura intricata cells, containing degraded mesophyll cells of the host. At maturity of ascomata, lower outer layer of the stroma rupturing by an irregular circle in the outer portion.

Ascomata confined to the abaxial lower part of the stromata, toroidal or horseshoe shaped, exposing yellowish hymenium in surface view, $290-600 \mu \mathrm{~m}$ thick, with one to two loculi at median vertical section, hymenial space roughly circular; upper wall developing beneath the lower layer of the stroma $50-75 \mu \mathrm{~m}$ thick, consisting of browned textura globulosa cells, with dark browning in the intercellular spaces; lower wall $25-35 \mu \mathrm{~m}$ thick, consisting of dark brown textura intricata cells; subhymenium 20-100 $\mu \mathrm{m}$ thick, consisting of hyaline textura intricata cells, often with fragments of blackened material in the intercellular spaces at the lower portion. Paraphyses filiform, simple, 170-200 \times $0.5 \mu \mathrm{~m}$, aseptate, circinately coiled at the apex. Asci ripening sequentially, narrowly clavate, long-stalked, 95-170 \times $9.5-12 \mu \mathrm{~m}$, truncate at apex, without a pore bluing in Melzer's reagent, 8-spored. Ascospores 1- to 3-seriate, elongated clavate, tumescent at the base, $24-43 \times 2.5-4 \mu \mathrm{~m}$, hyaline, aseptate, occasionally covered by a thin gelatinous sheath.

At spermogonial stage developing before ascomatal stage, stromata black, shining, rugose and rising slightly on the adaxial surface, not shining and flat on the abaxial
surface; outer layer of stroma formed beneath the host cuticle, $15-50 \mu \mathrm{~m}$ thick, consisting of strongly blackened tissue with structure difficult to discern, on the adaxial surface, $10-25 \mu \mathrm{~m}$ thick, consisting of dark brown textura angularis cells with blackening in the intercellular spaces on the abaxial surface.

Spermogonia confined to the adaxial part of the stroma, formed $50-60 \mu \mathrm{~m}$ thick; upper wall formed as the outer layer of stroma; lower wall $5.5-13 \mu \mathrm{~m}$ thick, consisting of heavily degraded epidermal cells and brown textura intricate cells; spermogonial lumen divided into several loculi by blacked rampart tissue, which arises from the lower wall; the lower layer of spermogonium $3-5 \mu \mathrm{~m}$ thick, hyaline tissue with structure difficult to discern. Spermatiophores arising directly from the lower layer cells, cylindrical, slightly tapering towards the apex, $20-25 \times 1 \mu \mathrm{~m}$, hyaline with dark brown at the basal portion, holoblastic, proliferating mostly percurrently but occasionally sympodially. Spermatia clavate, $3-5 \times 1 \mu \mathrm{~m}$, hyaline, aseptate.

Additional specimens examined: On living leaves of I. pedunculosa, Agenogi, Matsue, Shimane Pref., Japan, April 25, 2002 (YSH-419), May 11, 2004 (YSH-1162), April 21, 2006 (YSH-1655), May 30, 2006 (YSH-1701), April 6, 2007 (YSH-1797), April 20, 2007 (YSH-1814), May 11, 2007 (YSH-1831), June 17, 2007 (YSH-1856*); Ohba, Matsue, Shimane Pref., Japan, March 11, 2002 (YSH-367), April 19, 2002 (YSH-400), May 25, 2002 (YSH-448*), May 17, 2003 (YSH-803), April 28, 2004 (YSH-1148), May 5, 2004 (YSH1157), May 15, 2004 (YSH-1169), May 26, 2004 (YSH-1187), June 14, 2004 (YSH-1214*), April 27, 2005 (YSH-1427), May 3, 2005 (YSH-1435), April 12, 2007 (YSH-1810), May 2, 2007 (YSH-1827), May 16, 2007 (YSH-1834, 1835), June 4, 2007 (YSH-1844-1, 1844-2*, 1845-1, 1845-2*, 1849-1, 1849-2*); Shinji, Matsue, Shimane Pref., Japan, May 19, 1987 (SFH-1033); Shimo-tadokoro, Ounan, Ouchi, Shimane Pref., Japan, April 12, 1990 (SFH-1108) (* indicates spermogonia- and spermatia-producing specimens).

Notes: Rhytisma ilicis-pedunculosae is characterized by small stromata, truncate apices of asci, and long clavate ascospores tumidiuscule at the base (Table 1; Figs. 21, 25$27,33)$. It is a unique feature that paraphyses are circinately coiled at the apex. The spermogonial stage of R. ilicispedunculosae is characterized by spermogonia formed only on the adaxial leaf surface and clavate spermatia (Figs. 28, 30, 36).

Yoshinaga (1902) and Hennings (1903) described Rhytisma on I. pedunculosa as R. ilicis-latifoliae. Because the morphology of R. ilicis-pedunculosae is clearly different from R. ilicis-latifoliae, their identification is considered to be incorrect.

Results and discussion

Seasonal development of symptoms, signs, and fruiting bodies and infection cycle of the tar spot disease

The seasonal development of symptoms and production of ascospores and spermatia is collectively shown in Fig. 37.

Figs. 21-30. Rhytisma ilicis-pedunculosae. 21 Opened ascostroma on abaxial surface. 22 General view of ascostroma in vertical section. $a d \mathrm{~s}$, adaxial leaf surface; $a b s$, abaxial leaf surface. 23 Enlarged ascoma formed in stroma. $h y$, hymenium; $f b$, fragments of blackened material; $o l$, outer layer of stroma; is, inner portion of stroma; $u w$, upper wall of ascoma; $l w$, lower wall of ascoma. 24 Asci and paraphyses. 25 Upper part of asci. 26 Ascospore. 27 Blackened stromata on upper leaf
surface. 28 General view of spermogonium in vertical section. ads, adaxial leaf surface; $a b s$, abaxial leaf surface. 29 Enlarged spermogonium in stroma. s, spermatia; $s p$, spermatiophores; $s m$, spermatial mass; $o l$, outer layer of stroma; $l w$, lower wall of spermogonium. 30 Spermatia. Bars 21, 22, 281 mm ; 23, $24100 \mu \mathrm{~m}$; 25, 26, 29, $3010 \mu \mathrm{~m}$; 27 10 mm

Figs. 31-33. Asci (right),
ascospores (upper), and paraphyses (left) of Rhytisma spp. 31 R. ilicis-integrae.
32 R. ilicis-latifoliae.
33 R. ilicis-pedunculosae. Bars $10 \mu \mathrm{~m}$

Figs. 34-36. Spermatiophores (lower) and spermatia (upper) of Rhytisma spp. 34 R. ilicisintegrae. 35 R. ilicis-latifoliae. 36 R. ilicis-pedunculosae. Bars $1 \mu \mathrm{~m}$ (upper), $10 \mu \mathrm{~m}$ (lower)

Fig. 37. Infection cycle of Rhytisma (R.) ilicis-integrae, R. ilicis-latifoliae, and R. ilicispedunculosae on leaves of Ilex (I.) trees

Figs. 38-40. Germination and forming appressorium of ascospore. 38 Rhytisma ilicisintegrae. 39 R. ilicis-latifoliae. 40 R. ilicis-pedunculosae. Bars $10 \mu \mathrm{~m}$

produced from early February in the ascomata. Asci are ripening sequentially and ascospores are produced from early April to late May in R. ilicis-integrae and from early April to early June in R. ilicis-latifoliae and R. ilicispedunculosae. After most of the ascospores are released from asci, the ascomata of these fungi become rotten or dried and decayed.

From the foregoing survey, the only inoculum of the tar spot disease in evergreen Ilex trees is considered to be ascospores produced on the previous-year leaves for about 1 month in early spring when the current-year leaves are developing. The tar spots of the disease appeared only in May, but then no disease development was observed. The infection source of tar spot diseases in evergreen Ilex trees in Japan, therefore, is living leaves infected in previous spring.

The host of R. himalense is also the evergreen Ilex tree, and ascomata are reported to be formed on living leaves in November (Cannon and Minter 1986); spermogonia and spermatia of the fungus were not observed in India (Cannon and Minter 1986; Hou and Piepenbring 2005). In contrast, the hosts of the following Rhytisma species are deciduous trees and ascomata develop in spring directly from the spermogonia (described as conidiomata), which are formed in the previous year on the fallen leaves: Rhytisma acerinum (Pers.) Fr., R. americanum Hudler \& Banik, and R. punctatum (Pers.) Fr. on Acer spp. (Jones 1925; Woo and Partridge 1969; Cannon and Minter 1986; Hudler and Banik 1987; Hudler et al. 1998), R. salicinum (Pers.) Fr. and R. umbonatum Hoppe on Salix spp. (Cannon and Minter 1986), and R. xylostei Naumov on Lonicera spp. (Cannon and Minter 1986). It is noteworthy that the infection sources of these tar spot diseases are different between evergreen and deciduous trees of the host.

Germination of ascospores and formation of appressoria
Ascospores of the three Rhytisma species germinated on 2% glucose agar at $20^{\circ} \mathrm{C}$ after 12 h and ended forming of the appressoria. Germination tubes developed from mostly apical or basal sites in R. ilicis-integrae and mostly apical or lateral sites in R. ilicis-latifoliae and R. ilicispedunculosae.

Connecting hyphae between ascospores and appressoria of R. ilicis-integrae, R. ilicis-latifoliae, and R. ilicispedunculosae were $34-69 \times 2-2.5 \mu \mathrm{~m}, 10-32(-49) \times 1-2 \mu \mathrm{~m}$, and $20-78 \times 1-2 \mu \mathrm{~m}$, respectively. The shape of appressoria was spherical, fusiform to elliptical in all the species. Appressoria of R. ilicis-integrae, R. ilicis-latifoliae, and R. ilicispedunculosae were $6-14.5 \times 6-9.5 \mu \mathrm{~m}, 4.5-10 \times 4.5-6.5 \mu \mathrm{~m}$, and $4.5-7.5 \times 4.5-7 \mu \mathrm{~m}$, respectively (Figs. 38-40).

Osorio and Stephan (1989) reported that the morphology of the appressorium is unique for each species of the family Rhytismataceae and stated possibilities for use as additional taxonomic characteristics. My observation suggests that R. ilicis-latifoliae can be distinguished from R. ilicis-integrae and R. ilicis-pedunculosae by shorter connecting hyphae and that R. ilicis-integrae can be distinguished
from R. ilicis-latifoliae and R. ilicis-pedunculosae by larger appressoria. Hudler et al. (1998) recognized differences in morphology of the germinating tube of Rhytisma acerinum and R. americanum. No cultures of these fungi, however, could be obtained from the germinating ascospores.

Slender hyphae developed from these appressoria but did not elongate more than $20 \mu \mathrm{~m}$ (Fig. 40). My repeated attempts to obtain cultures of these Rhytisma species by transferring the ascospores germinating and forming appressoria onto potato glucose agar media failed.

Acknowledgments I thank Dr. Shigeru Kaneko for invaluable suggestions and for kindly reviewing the manuscript.

References

Cannon PF, Minter DW (1986) The Rhytismataceae of the Indian Subcontinent. Mycol Pap 155:1-123
Hennings P (1899) Fungi. In: Warburgh O (ed) Monsunia I. Wilhelm Engelmann Verlag, Leipzig, pp 1-38
Hennings P (1900) Fungi japonica I. Engler's Bot Jahrb 28:259280
Hennings P (1901) Fungi japonica II. Engler's Bot Jahrb 29:146153
Hennings P (1903) Fungi japonica IV. Engler's Bot Jahrb 31:728742
Höhnel F von (1917) System der Phacidiales v. H. Ber Dtsch Bot Ges 35:416-422
Horie H, Takano K, Uematsu S, Yoshimatsu H, Ikeda F (2001) Illustrated book of diseases of ornamental plants (in Japanese). Zenkoku-Noson-Kyouiku-Kyoukai, Tokyo, pp 287-289
Hou C-L, Piepenbring M (2005) Known and two new species of Rhytisma (Rhytismatales, Ascomycota) from China. Mycopathologia 159:299-306
Hudler GW, Banik MT (1987) Unusual epidemic of tar spot on Norway maple in upstate New York. Plant Dis 71:65-68
Hudler GW, Jensen-Tracy S, Banik MT (1998) Rhytisma americanum sp. nov.: a previously undescribed species on maples (Acer spp.). Mycotaxon 68:405-416
Jones SG (1925) Life-history and cytology of Rhytisma acerinum (Pers.) Fries. Ann Bot 39:41-75
Kellerman WA (1902) A new species of Rhytisma. J Mycol 8:50-51
Kobayashi T (1983) Diseases and insects of ornamental trees. Diseases and their control, revised edn (in Japanese). Nihon-Ringyo-GijyutsuKyokai, Tokyo, pp 223-225
Kobayashi T (2007) Index of fungi inhabiting woody plants in Japan. Host, distribution and literature (in Japanese). Zenkoku-Noson-Kyoiku-Kyokai, Tokyo, pp 849-850
Luttrell ES (1940) Tar spot of American holly. Bull Torrey Bot Club 67:692-704
Osorio M, Stephan BR (1989) Germination and appressorium formation in vitro of some species of the Rhytismataceae. Mycol Res 93:439-451
Saccardo PA (1889) Sylloge fungorum omnium hucusque cognitorum, vol 8. Published by the author, Patavii, p 433
Saccardo PA (1895) Sylloge fungorum omnium hucusque cognitorum, vol 11. Published by the author, Patavii, pp 756, 759
Saccardo PA (1902) Sylloge fungorum omnium hucusque cognitorum, vol 16. Published by the author, Patavii, p 790
Saccardo PA (1906) Sylloge fungorum omnium hucusque cognitorum, vol 18. Published by the author, Patavii, p 164
Sawada K (1959) Descriptive catalogue of Taiwan (Formosan) fungi. XI. Coll Agric Nat Taiwan Univ Spec Publ 8:1-268

Sydow H (1932) Novae fungorum species XXI. Ann Mycol 30:91-117
Sydow H, Sydow P, Butler EJ (1911) Fungi Indiae Orientalis. Ann Mycol 9:377
Tanaka E (1890) Report on fungi collected II. Bot Mag Tokyo 4:298-299

The Phytopathological Society of Japan (2000) Common names of plant diseases in Japan. Japan Plant Protection Association, Tokyo
Woo JY, Partridge AD (1969) The life history and cytology of Rhytisma punctatum on bigleaf maple. Mycologia 61:1085-1095
Yamamoto M, Yasumori H (1960) Miscellaneous notes on fungi collected at "Hikimi" college forest. Bull Shimane Agric Univ 8(A): 178-183

Yoshinaga T (1901) On some fungi from Tosa. Bot Mag Tokyo 15: 94-98
Yoshinaga T (1902) On some fungi from Tosa. II. Bot Mag Tokyo 16: 1-7
Yoshinaga T (1904) Heptaticeae and fungi around the Marine Biological Station at Misaki. Bot Mag Tokyo 18:216-220
Yoshinaga T (1911) Host of parasitic fungi of Prov. Tosa. Bot Mag Tokyo 25:489-491

[^0]: Y. Suto (

 5-11-46, Agenogi, Matsue, Shimane 690-0015, Japan
 Tel. +81-852-23-6732; Fax +81-852-23-6732
 e-mail: suto-yasuo@nifty.com

